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Abstract. A two-dimensional axisymmetric mathematical model of electron-beam autocrucible melting is devel-
oped and examined. Here, the hypothesis is used that forced convective heat transfer in the melt may be modelled
with the help of the coefficient of effective thermal conductivity,λE . A simplified approach is used in whichλE is
assumed to be known. In another approach the value ofλE depends on a prescribed value of a mean melt-stirring
velocity and a mean liquid-pool radius which is determined in the course of solving of the problem. With the
help of the Kirchoff transformation and a Green function we may reduce the problem to a nonlinear Hammerstein
integral equation. Here, a dependence of the thermal-conductivity coefficient on the temperature,λS(T ), at the
cooled surfaces is disregarded and constant (mean) values ofλS are utilized. In order to solve the problem in the
case where this dependenceλS(T ) is taken into account, an axuiliary Green-function method is proposed which
also permits to take into account a change of the heat-exchange coefficients on the autocrucible. This reduces
the problem to a system of three integral Hammerstein equations. Numerical solutions of the nonlinear integral
equations are obtained with the help of a variational (projective-net) method for the case of circular scanning of
an electron beam over the heated surface. The computational results are well consistent with experimental data.

Key words: melting, electron beam, circular scanning, steady-state Stefan problem, auxiliary Green-function
method.

1. Introduction

In order to produce refractory metals and alloys one applies vacuum electron-beam autocru-
cible melting (EBAM) [1, 2], which is a special casting method. The main advantage of this
method (in comparison with other methods of electric metallurgy) is the high degree of metal
refining from harmful nonmetallic and gas inclusions. Complexity of thermal, hydrodynam-
ical and physicochemical processes in an autocrucible, high temperatures and profound vac-
uum not only considerably complicate experimental studies of temperature fields in a melted
portion of material, but make such studies also, for some refractory metals, problematical.
In this connection, besides experimental methods a decisive role is played by mathematical
methods of computation and prediction of thermal and kinetic characteristics of the melting
process.

EBAM is realized applying melt electromagnetic stirring (MEMS) over the whole volume
of the liquid pool, enabling the increase of the end metal discharge. Complex mathematical
models in the form of a set of differential equations of heat and mass transfer, which take
account of hydrodynamic and electromagnetic processes, can be used for melting process
modelling. Such models are extremely laborious and their numerical realization requires much
computer time. In order to determine the basic technological parameters of the EBAM process
on the basis of numerical calculations, it is advantageous to use simplified mathematical mod-



174 Yu. A. Mitropolsky et al.

Figure 1. Scheme of the electron-beam autocrucible melting process in an autocrucible.

els [3–8], based on special statements of heat-conduction problems, including phase-change
metal melt phenomena (Stefan problems). It is necessary to find the temperature fields in both
solid and liquid metal, as well as its moving isothermal surface on which absorption of the
melting heat takes place.

Solid-liquid phase-change problems occur in a diverse range of technical applications, such
as metal processing, welding, environmental engineering and solar energy [9]. A few recent
advances are discussed in [9] with special emphasis on the phase change of metals. An exten-
sive review of moving and free-boundary problems related to the heat equation, particularly
regarding the Stefan problem, can be found, for example, in [10].

Simplified mathematical models of heat transfer during electron-beam autocrucible melt-
ing are developed and examined in [8]. To obtain an approximate description of the liquid-pool
dynamics, the one-dimensional Stefan problem for an ‘equivalent’ spherical shell is consid-
ered. The corresponding steady-state problem admits an exact analytical solution by means
of which the dependence of the melt volumeW , and melt overheating1T , on input data
are obtained. Also, the basic melting parameters are determined ensuring that the preassigned
W and1T are obtained. To solve the one-dimensional nonstationary Stefan problem by the
variational method, it is essential that we use a construction of the exact solution of the
steady-state Stefan problem. As a result, the problem is reduced to a Cauchy problem for
a set of nonlinear ordinary differential equations. As far as the isotherm field is concerned,
the obtained approximate solutions are reasonably consistent with numerical results obtained
with the help of an implicit difference scheme for the Stefan problem.

In this paper we present a two-dimensional axisymmetric steady-state mathematical model
which corresponds adequately to the thermophysical model of the EBAM.

2. Mathematical model

Let us describe the process under consideration and construct a mathematical model for it.
The autocrucible has a cylindrical form (Figure 1), its lateral surface(r = a) and bottom

surface(z = 0) are cooled, and energy absorption of the electron-beam heating with a flux
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densityq occurs in the focal spot of radiusb < a on the surfacez = l. The generated
thermal energy is spent on metal heating, on melting heat, that can be represented by heat
flows distributed along a melting isotherm (an interface between the solid and liquid phases)
with a constant linear density. Besides, from the lateral and bottom surfaces, heat exchange
with the surroundings (a water-cooled contour) occurs through conduction and radiation in
a manner that is difficult to control. The heat losses through radiation and evaporation take
place from the heated surface.

Heating is realized by a focused electron beam scanning over the heated surface. The level
of the accelerating voltage of an electron gun determines the injection depth of electrons into
the metal and defines the character of the heat source used for the modelling of the electron-
beam heating. In most cases, electron guns of the axial type with accelerating voltages equal
to 40–50 kV can be used [1]. Calculations by the Shonland formula [11] show that in this case
the electron injection depth does not exceed 10−5 m into metal. Therefore, computation of the
metal temperature by means of the mathematical model with a surface source of electron-beam
heating, as used in this paper, assumes a relative error not exceeding 0·01% in comparison to
the case which considers volume heat absorption.

When an electron beam scans over a circle, the center of which is situated on the axis
r = 0, or when heating by means of a fixed electron beam is axisymmetric, the temperature
field of an autocrucible is axisymmetric,T = T (r, z). In accordance with the thermophysical
meaning of the problem, there would be a stabilization to a limiting steady state if the overall
supplied heat flux is completely balanced by means of the cooling system and by heat losses
connected with radiation and evaporation. We may write the steady-state equations of heat
conduction and the boundary conditions as follows
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Here the following notations are introduced:

λ(T ) =
{
λS(T ), T < Tm,

λL(T ), T > Tm,

whereTW is the water temperature in the cooling system,Tm is the melting temperature,λL, λS
are the thermal-conductivity coefficients for the liquid and solid phases, respectively;q(r)

is the electron-beam heating-power density being absorbed by the metal;f (T ) = εσT 4 +
η(T − Tm)QEV(T ) is the flux density of heat losses at the expense of radiation and evapora-
tion from the heated surface,z = l, (η(T ) is the Heavyside function). Further,ε, σ are the
blackness degree and the Stefan-Boltzmann constant. In the general case the coefficients of
heat exchange on the cooled surfaces,α1(z), α2(r), may be functions ofz, r, respectively. The
domain� = {(r, z) : 0 < r < a,0 < z < l} is divided by the solid-liquid boundary into
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two subdomains�S = {(r, z) ∈ � : T (r, z) < Tm} and�L = {(r, z) ∈ � : T (r, z) > Tm},
corresponding to the solid and liquid phases of the metal.

On an unknown solid-liquid interface,r = R(z), the metal temperature and the melting
temperature have to be equal and the same is true for the heat fluxes coming from the liquid
and solid phases in the steady state,i.e.

T (R(z), z) = Tm, λL
∂T

∂n

∣∣∣∣
r=R(z)−0

= λS
∂T

∂n

∣∣∣∣
r=R(z)+0

. (2)

We shall use the well-known hypothesis that forced convective heat transfer in melt con-
ditioned by MEMS may be simulated with the help of the coefficient of effective thermal
conductivity,λE = k̃λL, whereλL is the coefficient of molecular thermal conductivity. To
determine the value of̃k we may use the formula obtained as a result of experimental investi-
gations on turbulent heat transfer in the case of forced convection [12]:

k̃ =
{

0·45(PrRe)0·438, if PrRe6 8600,

1·35× 10−6(PrRe)1·84, if PrRe> 8600.
(3)

Taking into account that PrRe= 2vmr∗CVL/λL, we seẽk depends on the heat capacity of a
unit of liquid-metal volumeCVL on a mean melt motion velocityvm and on a mean pool radius
r∗. In [1] the valuek̃ = 10 is used for calculating the case where electromagnetic stirring is
sufficiently intense.

Assume the coefficient of effective thermal conductivityλE = const. in the liquid phase
domain,α1(z) = α1 = const., we may transform the steady-state Stefan problem (1), (2) into
the form
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We shall represent the functionQEV(T ), designating the density of the heat flux of evap-
oration in the formQEV(T ) = c1 exp(−c2/T ), where one may find the parametersc1, c2,
using both data from experiment and the Clapeyron–Clausius law written for a thin gas layer
closely approximating the evaporation surface, [13].



Mathematical modelling of heat transfer177

3. Procedure of solving of the Stefan problem

At present numerical methods for the Stefan problem, such as the finite-difference method and
the finite-element method, are available [9, 10, 14–17]. However, realization of these methods
in the case of two space dimensions is accompanied by considerable technical difficulties and
insufficient economy of the computations. Therefore, we shall reduce the Stefan problem (4)
to a nonlinear integral Hammerstein equation.

First we apply the Kirchhoff transformation of the functionT

u(T ) =
∫ T−TW

0
λ(τ)dτ.

If the dependence of the thermal-conductivity coefficient on the temperature is approxi-
mated by the step function

λ(T ) = λi, Ti−1 6 T 6 Ti, i = 1,K, (TK = Tm, T0 = TW);
λ(T ) = k̃λL, T > Tm,

or by the linear dependence in the solid-phase domain

λS(T ) = λS(T0)− β(T − T0), T0 6 T 6 Tm, (T0 = TW);
λ(T ) = k̃λL, T > Tm,

we can find the inverse functionT (u) in analytical form.
If we excludeT (r, z), from (4), we obtain a simpler boundary-value problem for a new

unknown function,u(r, z),
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and the condition for the determination of an interfacer = R(z) between the solid and liquid
phases

u(R(z), z) = um. (6)

Herehi = αi/λSi, i = 1,2, whereλSi are mean values ofλS on the surfacesr = a and
z = 0, respectively;um = u(Tm).

We shall consider the Green function,G(r, z;ρ, η), which is determined as a solution of
the linear boundary-value problem with homogeneous boundary conditions

1

r

∂

∂r

(
r
∂G

∂r

)
+ ∂

2G

∂z2
= −δ(r − ρ)δ(z− η), 0< r, ρ < a, 0< z, η < l,



178 Yu. A. Mitropolsky et al.
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where the formal relations for the Dirac function are given by∫ l

0
g1(z)δ(z− η)dz = g1(η),

∫ a

0
g2(r)δ(r − ρ)rdr = g2(ρ).

The Green function is found in the form

G(r, ρ; z, η) = 2
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(h2
1+ γ 2

n )[γn sinh(γnl)+ h2 cosh(γnl)]J 2
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,

wheregn(z, η) = [γn cosh(γn, z)+h2 sinh(γn, z)]cosh(γn(l−η)), z 6 η; gn(η, z) = gn(z, η);
γn > 0 are roots of the equationh1J0(γ a)− γ J1(γ a) = 0; Jn(z) is the Bessel function of the
first kind andnth order.

By means of the second Green formula probem (5) may be reduced to an equivalent
nonlinear integral equation

u(r, z) = u0(r, z)−
∫ a

0
G(r, z;ρ, l)f [T (u(ρ, l))]ρdρ, (7)

where

u0(r, z) =
∫ a

0
q(ρ)G(r, z;ρ, l)ρdρ.

Substitutingz = l in (7), we arrive at the nonlinear Hammerstein integral equation for the
functionv(r) = u(r, l)

v(r) = v0(r)−
∫ a

0
G(r, ρ)f [T (v(ρ))]ρdρ, (8)

wherev0(r) = u0(r, l), G(r, ρ) = G(r, l;ρ, l). Upon solving integral equation (8), we may
find the functionu(r, z) and the solid-liquid interfacer = R(z) from quadrature (7) and
Equation (6), respectively.

To find an approximate solution of Equation (8), we approximatev(r) by the step function
and define a mean integral value ofv(r) on the interval(ri−1, ri) by vi , whereri are decom-
position points of the segment[0, a] which has been divided intoM parts. After applying a
variational method, we obtain a system of nonlinear equations forvj , j = 1,M ,

vj = v0j −
M∑
i=1

Gijf (T (vi)), j = 1,M, (9)

where the constantsv0,j ,Gij are found by integration of known functions.
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Having determinedvj , j = 1,M , we can represent the modified temperature in the form
of a series

u(r, z) = 2

a2

∞∑
n=1

An(z)J0(γnr), (10)
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gn(z) = (γn + h2) exp(−γn(l − z))+ (γn − h2) exp(−γn(l + z)).
Using a simplified approach, we can assume the coefficient of effective thermal conductiv-

ity to be known(λE = const.), independent of a solution of the heat-conduction problem. In
that case system (9) remains to be solved.

Using another approach where a value ofλE = k̃λI is determined in the course of solving
the problem, we can use formula (3) in accordance to whichk̃ depends on a mean melt-stirring
velocity vm and a mean radius of the liquid pool,r∗. We shall assume that the value ofvm is
determined by the action intensity of the MEMS system only. If the value ofvm is given, we
may reduce the determination ofk̃ to finding a mean integral value of the liquid pool radius

r∗ = 1

l − z0

∫ l

z0

R(z)dz (11)

over its depth,H = l − z0, also to be determined. Herez0 is a solution of the equation
R(z) = 0. In this case it is impossible to find a solution of system (9) since the parameterk̃ is
used for determining of a relation between the functionsT andu.

Let us describe the solution procedure of the problem in this case. Evidently, we can find
k̃ = k̃(r∗) from (3) and computeλE = k̃(r∗)λL for every value ofr∗ ∈ (0, a) and then we
can solve system (9). Further, considering Equation (6) for a sequence of discrete values ofzi
we can find a sequence of corresponding values of the functionri = R(zi) by which we can
compute the right side of equality (11). Thus, relation (11) can be written in the form

r∗ = F(r∗), (12)

whereF(r∗), is a function which for everyr∗ ∈ (0, a) correlates to a computation result of the
right side of (11) obtained in the way stated above. Thus, the determination of a mean integral
value of the pool radiusr∗ is practically reduced to the numerical solution of the functional
equation (12) by an iterative procedure.

Therefore, after finding an approximate solution of Equation (12), we can find a coefficient
of the effective thermal conductivityλE = k̃(r∗)λL, a modified temperature fieldu(r, z) and a
solid-liquid boundaryr = R(z) with a mean integral value of the radius which is equal tor∗.
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The desired steady-state temperature fieldT (r, z) is determined by inversion of the Kirchhoff
transformationu(T ).

The liquid-pool volumeW , the mean integral melt overheating over the whole pool volume
1T and the melt overheating on the pool surface1Ti are computed by means of the formulas

W = π ·
∫ l

z0

R2(z)dz, 1T = 2π

W

∫ l

z0

∫ R(z)

0
T (r, z)rdrdz − Tm,

1Tl = 2

R2(l)

∫ R(l)

0
T (r, l)rdr − Tm.

4. Determination of q(r) in the case of circular electron-beam scanning

In practice, EBAM heating is realized by a focused electron beam scanning over the heated
surface in accordance with a given program (a circle, a spiral, intersecting lines and others).
Let us determineq(r), a steady-state power-density distribution on the heated surface in the
case of the scanning of an electron beam over a circle of radius 0< R < a. LetO1 be the focal
point of a beam situated in the planez = l and|OO1| = R, whereO is situated in the same
plane on the autocrucible axis. Let us consider a pointM(β) at a distancer to the pointO and
one at a distancey(β) to the pointO1, whereβ =< O1OM(β). At M(β) the value of the
power density is equal toq0 exp[−kry2(β)], wherey2(β) = R2+r2−2rR cosβ, 06 β 6 π
(from the cosine theorem);q0 = Pkr/π is the value of the heating-power density at the
focal point of a beam,P is the heating power being absorbed by the metal,kr = 2b−2 is a
concentration coefficient of the heat source in the radial direction andb is a focal-spot radius.
The density of the energy being absorbed at every point at a distancesr from the pointO and
at the time when the electron beam traverses one full circle of radiusR (in the rotation period
Tsc= 2πR/vsc, wherevsc is a scan velocity) is determined by the integral

E(r) = 2q0

∫ Tsc/2

0
exp{−kr [r2 + R2− 2Rr· cos(vsct/R)]} dt

= 2Rq0

vsc
exp[−kr(r2 + R2)]

∫ π

0
exp(2krrR· cosβ)dβ.

The functionq(r) is assumed to be the mean value of the energy density being absorbed
per unit time

q(r) = E(r)

Tsc
= q0

π
exp[−kr(r2+ R2)]

∫ π

0
exp(2krrR· cosβ)dβ. (13)

From (13) we obtain forR = 0 the known formula for the normal distributionq(r) for the
case of axisymmetric heating by a fixed beam:q(r) = exp(−krr2). Expanding the exponential
function under the integral sign in (13) as a Taylor series, we may write the expression forq(r)

as

q(r) = q0 exp[−kr(r2 + R2)]
[

1+
∞∑
n=1

(2n− 1)!!
(2n)!!

(2krrR)2n

(2n)!

]
.
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The investigation of the functionq(r) from (13) shows that a maximum point ofq(r),
r = r0, is determined by the equation∫ π

0
(R· cosβ − r) exp(2krrR· cosβ)dβ = 0, (14)

Figure 2. Relative power density distribution of an
electron-beam over the heated surface forb = 0·03 m
and various values of circular scan radius: 1:R =
0 m; 2:R = 0·015 m; 3:= 0·025 m; 4:R = 0·03 m;
5:R = 0·04 m; 6:R = 0·4 m.

Figure 3. Influence of focal-spot radius on Niobium
dimensionless temperature distribution over heated
surface forR = 0 m; 1:b = 0·01 m; 2:b = 0·02 m;
3: b = 0·03 m; 4:b = 0·04 m.

from which we obtain the inequalities 06 r0 6 R. These inequalities are verified by a form
of the curvesq(r)/q0 shown in Figure 2 for the case whereb = 0·03 m and the scan radius
R takes various values: ifR = 0 and R= 0·15 m, then the maximum is atr0 = 0, but if
R is further increased, then the maximum points are situated on the interval(0, R). Thus, for
specific values ofR, the trajectory (a circle) of a maximum absorption of the heating energy
is situated inside the circle as bounded by the scan trajectoryr = R, but not on the liner = R
of the focusing beam. We may write Equation (14) as

1+
∞∑
n=1

(2n − 1)!!
(2n)!

[
2krr2

(2n)! −
1

(2n− 1)!
]
(2kr )

2n−1R2nr2n−2 = 0.

Restricting ourselves to two terms of the series, we obtain the biquadratic equation

k4
r R

4r4+ 2k2
r R

2(2− krR2)r2− 4(krR
2− 1) = 0,

from which we find the following approximate value ofr0

r0 ≈
√

2(krR2− 1)

krR
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and from the conditionr0 > 0 we have

R >
1√
kr
= b√

2
.

5. Numerical results

To illustrate the mathematical model developed in this paper, we did calculations of steady-
state EBAM heat regimes for niobium in an autocrucible of diameter 280 mm(a = 0·14 m),
where a level of the metal in the autocrucible wasl = 0·14 m and the electron-beam power
wasP0 = 190 kW. In accordance with [1] the electron-beam heating efficiency is equal to
η = 0·7; therefore, we assume that the power being absorbed by the metal is equal toP =
ηP0 = 133 kW.

For the calculations we take the following values of the parameters [1, 18]:Tm = 2740 K;
CVL = 0·2772× 107 J/(m3K); TW = 300 K; λL = 56·2716 W/(m·K); α1 = α2 =
400 W/(m2K); ε = 0·4; c1 = 0·31102×1018; c2 = 93868·526 (the values ofc1 andc2 were ob-
tained on the basis of the experimental data from [3]). In the solid-phase domain we consider
a step dependence of the thermal-conductivity coefficient on the temperature obtained with
the help of data for the niobium heat conductivity [18]. We consider axisymmetric heating of
metal by a fixed(R = 0) or scanning electron beam over a circle of radius 0< R < a, where
a steady-state distribution of the power densityq(r) on the heating surface is determined as in
(13).

In Figures 3 and 4 the curves of the metal-temperature distribution over the heated surface,
as obtained for various values of the scan radiusR(R = 0 for Figure 3)and the focal-spot
radiusb, provided that the MEMS system is used, are shown. Here we takevm = 0·3 m/s
because in autocrucibles that have been subjected frequently to MEMS systems, the metal
velocity is known to be close to this value (see [1]). The values ofk̃ obtained for values of the
scan radius between 0 to 6 cm range from 8·34 to 13·11 whenb = 0·01 m and from 11·79 to
12·88 forb = 0·04 m, that is, these values are close tok̃ = 10[1]. A comparison of the curves
of the melt-surface temperature obtained forb = 0·03 m,vm = 0·3 m/s (continuous lines) and
k̃ = 10 (dashed) is presented in Figure 5.

The temperature curvesT (r, l) for different values ofR reproduce the behavior of the
corresponding dependences onq(r) (Figure 2). Increasing the scan radius and the focal-spot
radius lead to a more uniform distribution of the density of the energy that is absorbed over
the heating surface and consequently, a decrease of the temperature gradient as well as natural
increase of the pool radius on the surfacez = l. If R is increased, the points of maximum
temperature attainment recede from the centerr = 0 of the pool surface, the temperature
T (0, l) decreases and approaches the melting temperatureTm. Therefore, if the scan radius
increases considerably(R > 0·06 m) the formation of a solid metal zone in the central part
of the pool is possible. Above the melting temperature, the temperature curves have a break
point. This is stipulated by the difference of the thermal-conductivity coefficients for the melt
and solid metal.

To determine the error made when the nonlinear boundary-value problem (5) is solved
approximately, we have computed the value of the total energy losses from the surfacez =
l, z = 0 andr = a which, for the exact solution of the steady-state problem, must be equal
to the value of the powerP absorbed by the metal. Calculations carried out with the use of
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the niobium data and the parameters stated above forb = 0·03 m show that the error made
during the process of determining the temperature on the surfacesz = l, z = 0 andr = a,
and computed with respect to the value of the power absorbed, is equal to 1·36% forR = 0
and to 0·165% forR = 0·03 m.

Figure 4. Influence of circular scan radius on
Niobium dimensionless temperature distribution
over heating surface forb = 0·01 m (continuous
lines) andb = 0·04 m (dahsed). 1:R = 0 m; 2:
R = 0·02 m; 3:R = 0·04 m; 4:R = 0·06 m.

Figure 5. Comparison of Niobium dimensionless
temperature distributions over heated surface for
b = 0·03 m,vm = 0·03 m/s (continuous lines) and
k̃ = 10 (dashed) for various values of scan radius.
1: R = 0 m; 2:R = 0·02 m; 3:R = 0·04 m; 4:
R = 0·06 m.

Figure 6 shows the sections of the solid-liquid interfaces,r = R(z), that were obtained
for various values of the scan radiusR for the cases where the MEMS system is used(vm =
0·3 m/s), including the case when then the radiation and evaporation heat losses from the
surfacez = l are disregarded(f = 0) and for the case where forced melt stirring is omitted
(vm = 0·005 m/s). In this last case the value ofk̃ changes from 1·44 to 2·00. When the
scan radiusR is varried from 0 to 0·05 m. The pool depth increases withR and reaches a
maximum for a specific value of the scan radius, but it decreases whenR is further increased.
At the expense of heat losses from the heated surface, the depth and the radius of the pool
decrease approximately by half. In the case of melting, when MEMS is used, the pool reaches
its greatest diameter not on the surfacez = l, but a little below it; thus, the solid-liquid
interface has a small bend in the direction of the axisr = 0, giving the pool an ellipsoidal
form as observed in practice. The presence of this bend is explained as follows: the heat losses
exceed the energy absorbed in the points where the melting isotherm surface intersects the
surfacez = l; therefore, the derivative of the temperature with respect to the axial coordinate,
z, is negative close to the surfacez = l. In the two other cases this derivative is positive
(vm = 0·005 m/s) and in another is equal to zero(f = 0). It should be noted that, for the
linear problem(f = 0), the position of the solid-liquid phase boundaryr = R(z) becomes
independent of the effective thermal-conductivity coefficient.
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Figure 6. Influence of the value of circular scan ra-
dius on sections of solid-liquid interfacesr = R(z),
obtained atb = 0·03 m for the cases wherevm =
0·3 m/s (continuous lines),vm = 0·005 m/s (dashed)
and f = 0 (dot-and-dash). 1:R = 0 m; 2: R =
0·03 m; 3:R = 0·04 m; 4:R = 0·05 m.

Figure 7. Dependences of niobium liquid pool vol-
ume on scan radius for the cases wherevm = 0·3 m/s
(continuous lines),vm = 0·005 m/s (dashed) and
f = 0 (dot-and-dash) forb = 0·01 m (indexing
1–3) andb = 0·04 m (1′–3′) and various values of
powerP ·1, 1′ : P = 65 kW; 2,2′ : P = 100 kW;
3, 3′ : P = 133 kW.

The graphs presented in Figures 7 and 8 show that an increase of the scan radius causes
an increase of the pool volume and a decrease of the melt overheating. This is fully explained
by the observation that the energy absorption is distributed more uniformly over the heated
surface whenR is increased. But in the case of melting with MEMS an extreme increase of
the scan radius causes a decrease of the volume, and for everyb the functionW(R) has a
maximum at some point. A comparison of the curvesW(R) obtained forvm = 0·005 m/s and
vm = 0·3 m/s shows that the use of MEMS permits to obtain forR = 0 a volume which is
7·5–20 times bigger (depending on the value ofb) and forR = 5 cm, for example, 2·8–3·5
times bigger. Applying a circular scan of the electron beam, one can make the pool volume
twelve times bigger forb = 1 cm (in comparison with the axisymmetric heating by a fixed
beam) and forb = 4 cm the volume is increased by 15%. At the expense of heat losses from
the heated surface the liquid pool volume is decreased by a facts of 2·5–4 for absorbed-power
levels in the rangeP = 65–133 kW. The melt overheating on the pool surface is more than
two times bigger than the mean integral overheating over the whole pool volume (Figure 8).

In Figure 9 we show the dependence of the relative total energy losses by radiation and
evaporation from the heated surface,PRD+EV/P , (continuous lines), the relative losses by
radiation,PRD/P , (dashed lines) and by metal evaporation,PEV/P , (dot-and-dash ones) on
the scan radiusR for k̃ = 10 and various values of the focal-spot radius. This analysis allows
us to conclude that an increase of the scan radius will lead to lower total lossesPRD+EV;
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the contribution of the radiation losses is increased and evaporation is decreased. Let us pay
attention to the fact that the total losses are stabilised and the presence of a minimum value of
PRD+EV/P for a specific value of the scan radius (to which a maximum value of the liquid pool
volume corresponds (Figure 7)). This points to the possibility that the EBAM technological
process can be constructed in such a way that energy losses through radiation and evaporation
can be reduced to a minimum.

Figure 8. Dependences of niobium mean integral
overheating over the whole pool volume (continuous
lines) and melt overheating on pool surface (dashed)
on scan radius for the cases whereb = 0·01 m (index-
ing 1–3) andb = 0·04 m (1′–3′) for various values of
powerP ·1,1′ : P = 65 kW; 2,2′ : P = 100 kW;
3,3′ : P = 133 kW.

Figure 9. Dependences of relative energy losses from
the heating surface (continuous lines), losses at the
expense of radiation (dashed) and metal evaporation
(dot-and-dash) on scan radius fork̃ = 10 and various
values of the focal spot radius. 1:b = 0·01 m; 2:b =
0·02 m; 3:b = 0·03 m; 4:b = 0·04 m.

6. Auxiliary Green function

In the reduction of the Stefan problem (4) to problem (5) for the modified temperatureu(r, z)

a dependence of the thermal-conductivity coefficientλS(T ) on temperature on the surfaces
r = a and z = 0 was not taken into account; instead constant (mean) values ofλS were
utilized. After applying the Kirchhoff transformation to the more complicated problem (1),
(2), we now obtain a nonlinear boundary-value problem foru(r, z)
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1

r

∂

∂r

(
r
∂u

∂r

)
+ ∂

2u

∂z2
= 0, 0< r < a, 0< z < l;

∂u

∂r
= 0, r = 0; ∂u

∂r
+ α1(z)[T (u)− TW ] = 0, r = a;

∂u

∂z
− α2(r)[T (u)− TW ] = 0, z = 0; ∂u

∂z
= q(r) − f (T (u)), z = l.

(15)

Because a Green’s function for the linear boundary-value problem corresponding to prob-
lem (15) does not exist, we represent the boundary condition on the surfacer = a in the
form

∂u

∂r
+ hu = hu− α1(z)[T (u)− TW ], r = a, 0< z < l,

(h is an arbitrary number such that 0< h < ∞) and formulate the boundary-value problem
for an auxiliary Green functionGa(r, z;ρ, x)

1

r

∂

∂r

(
r
∂Ga

∂r

)
+ ∂

2Ga

∂z2
= −δ(r − ρ)δ(z− x), 0< r, ρ < a, 0< z, x < l,

∂Ga(0, z;ρ, x)
∂r

= 0,
∂Ga(a, z;ρ, x)

∂r
+ hGa(a, z;ρ, x) = 0,

∂Ga(r,0;ρ, x)
∂z

= 0,
∂Ga(r, l;ρ, x)

∂z
= 0.

The solution may be written in the form

Ga(r, z;ρ, x) = 1

a2

∞∑
n=1

Gn(x, z)

Pn
J0(γnρ)J0(γnr),

Gn(x, z) = γn exp[−γn(z − x)][1+ exp(−2γnx)][1+ exp(−2γn(l − z))], x 6 z,

Gn(x, z) = Gn(z, x), Pn = (γ 2
n + h2)[1− exp(−2γnl)]J 2

0 (γna),

where 0< γ1 < γ2 < γ3 < · · · are the roots of the equationhJ0(γ a)− γ J1(γ a) = 0.
This auxiliary Green-function method was proposed first in [19].
Introducing the following notations:u(r,0) = v0(r), u(r, l) = v1(r), u(a, z) = w(z), and

using the second Green formula, we can express the unknown functionu(r, z) in terms of its
values on the surfacesz = 0, z = l andr = a:

u(r, z) =
∫ a

0
Ga(r, z;ρ, l)[q(ρ)− f (T (v1(ρ)))]ρdρ

+a
∫ l

0
Ga(r, z; a, x){hw(x) − α1(x)[T (w(x))− Tw}dx

−
∫ a

0
Ga(r, z;ρ,0)α2(ρ)[T (v0(ρ))− TW ]ρdρ.

(16)
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Writing the integral relation (16) forz = 0, z = l andr = a consecutively, we obtain a
system of three Hammerstein integral equations for the functionsv0(r), v1(r) andw(z). Upon
solving this system approximately by means of a projective-net method, we may findu(r, z)

from (16).
The numerical solution of the system of integral equations obtained from (16), is found

for the case of a steady-state temperature regime for the EBAM of niobium in an autocrucible
of diameter 280 mm(a = 0·14 m) with a metal level equal tol = 0·14 m. We have assumed
thatα2(r) ≡ 0, R = 0, b = 0·04 m,λE = 562·716 W/(m·K). We have considered a linear
dependence of the thermal-conductivity coefficientλS(T ) on the temperature based on the
niobium thermal-conductivity data [18]:λS(T ) = λ0 + β(T − TW), λ0 = 53·7 W/(m·K),
β = 0·01063,TW = 300 K.

Figure 10 presents the sections of the solid-liquid interfacesr = R(z) obtained forα1 =
400 W/(m2K) and for two values of the electron-beam heating power absorbed by the metal,
P = 130 kW andP = 65 kW, and for various representations of the thermal-conductivity co-
efficient in the solid-phase domain:λS = 54·1 W/(m·K) (the value from [1]), λS =
66·2 W/(m·K) (a mean value in the temperature interval from 300 K to 2740 K) as well as
a linear dependenceλS = λS(T ) (curve 3). Curves 4 and 5 correspond to the case where
λS = λS(T ) and a linear dependence of the heat exchange coefficientα1(z) on z is assumed.
Here,α1(0) = 300, α1(l) = 500 W/(m2K) (the curve 4); curve 5 corresponds to the values
α1(0) = 200, α1(l) = 600 W/(m2K).

Thus, since the dependence of the thermal conductivity on temperature could be taken into
account, thanks to the introduction of the auxiliary Green-function method for the example in
question, the refinement of the result for the melt volume ranges from 10·9% (comparison of
the curves 2 and 3) to 36·6% (comparison of the curves 1 and 3). Besides, the application of the
auxiliary Green-function method permits to take into account a change of the heat-exchange
coefficients on the cooled surfaces, of the autocrucible which, in turn, for the preceding ex-
ample leads to a refinement of the results of the calculation of the melt volume by 5·7% (a
comparison of the curves 3 and 4) and by 10·2% (comparison of the curves 3 and 5).

If we compare the obtained values of the liquid-pool volume and the results obtained for
the constant valueλS = 66·2 W/(m·K) on surfacer = a and a step dependenceλS = λS(T ) in
the solid-phase domain�S, we see that such assumptions lead to an enlargement of the volume
for α1 = 400 W/(m2K), P = 130 kW by 15·3% and by 9·8% forP = 65 kW. In addition, the
maximum rise of the metal temperature in the solid-phase domain forP = 130kW is 100 K
and 40 K at the center of the focal spot on the heated surface.

7. Comparison with experimental data

To verify the agreement of the mathematical model described by the Stefan problem (4) to
real thermal EBAM regimes, we have carried out a comparison of the computational results
with known experimental data given in [1]. For the experimental case of niobium melting
in an autocrucible of diameter 280 mm with MEMS for an electron beam of maximum power
P0 = 190 kW, the mass of the obtained melt oscillates from 8·4 kg to 8·7 kg, that is, its volume
varies between 976·7 cm3 and 1011·6 cm3. In Figure 7 the curvesW(R), corresponding to the
valueP = 133 kW, intersect this band of values for scan radius values between 3 and 5 cm.

In accordance with [1] in the case of EBAM without forced stirring the pool depth of zir-
conium in an autocrucible of diameter 250 mm amounts to 24–28 mm. In accordance with our
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Figure 10. Sections of solid-liquid interfacesr = R(z) obtained for the cases whereP = 130 kW (continuous
lines) andP = 65 kW (dashed) atα1 = 400 W/(m2K) (curves 1–3); for a linear dependenceα1(z) (curves
4, 5) and various ways of representation of the thermal conductivity coefficient in the solid phase domain. 1:
λS = 54·1 W/(mK); 2:λS = 66·2 W/(mK); 3:λS = λS(T ); 4:λS = λS(T ), α1(0) = 300,α1(l) = 500 W/(m2K);
5: λS = λS(T ), α1(0) = 200,α1(l) =W/(m2K).

calculations for zirconium(a = 0·125 m;l = 0·1 mα1 = 400 W/(m2K); α2 = 50 W/(m2K);
vm = 0·005 m/s;b = 0·03 m;R = 0·35 m,λ andCVL from [1]) the pool depth oscillates from
20 to 27,2 mm if the absorbed power is changed fromP = 52·5 kW toP = 105 kW.

In [1] one obtained experimental results for zirconium melting in an autocrucible of di-
ameter 215 mm for a maximum power ofP0 = 102 kW (P = 0·7 kW, P0 = 71·4 kW).
The autocrucible bottom was not cooled. The discharge of the zirconium melt for melt-
ing with MEMS was equal to 10·7 kg (1648·7 cm3) and without MEMS it was equal to
3·1 kg (477·8 cm3). To compare the results we have performed calculations for the following
parameters values:

(1) a = 0·1075 m; l = 0·1 m; b = 0·03 m; P = 71·4 kW; α1 = 400 W/(m2K); α2 =
50 W/(m2K); vm = 0·3 m/s; 3 cm6 R 6 6 cm;

(2) a = 0·1075 m;l = 0·05 m; b = 0·03 m; P = 71·4 kW; α1 = 400 W/(m2K); α2 =
50 W/(m2K); vm = 0·005 m/s; 3 cm6 R 6 5·25 cm.

In the first example the liquid-pool volume is changed from 919 cm3 to 1633 cm3 and in the
second it is changed from 206 cm and 464 cm3.

In [20] it was established that melt overheating over melting temperature did not exceed
100 K for the stirring velocity in a liquid pool ofvm = 1 m/s. This result agrees well with the
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values of the maximum temperature on the pool surface obtained by means of our numerical
calculations. For niobium(a = l = 0·14 m;b = 0·03 m;P = 133 kW;R = 0·065 m) the
maximum overheating is equal to 101–102 degrees and for the scan radiusR = 0·05 m one
achieves 186 K. For zirconium(a = 0·1075 m,l = 0·11 m;b = 0·03 m;P = 71·4 kW) the
maximum overheating ranges from 134 K(R = 0·045 m) to 95 K(R = 0·055 m).

8. Conclusions

Comparison of the obtained results with experimental data has shown that the proposed math-
ematical models correspond adequately to the thermophysical model of the EBAM in a cylin-
drical autocrucible during axisymmetric heating. Going from the mathematical model to the
numerical scheme involves analytical methods. These eliminate the necessity of the approx-
imation of the derivatives with respect to the space variables which is required by the finite-
difference method. We have avoid certain undesirable aspects of the finite-element, such as
considerable technical difficulties and insufficient economy of the computations.

Applying the Green-function method we were confronted with the necessity of using a
constant value ofλS on the cooled surfaces of the autocrucible. Otherwise the Green function
of the Neumann problem which we obtained for the functionu(r, z) would not have existed.
But we have overcome this obstacle by introducing an auxiliary Green function. This function
we constructed applying an equivalent transformation of some of the boundary conditions of
the problem.

Regarding future research we must note that the development and investigation of the
nonstationary mathematical model is complicated considerably in the case of heating by a
scanning electron beam. We can not be certain yet that the corresponding nonstationary Stefan
problem will be axisymmetric.
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