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Abstract. A two-dimensional axisymmetric mathematical model of electron-beam autocrucible melting is devel-
oped and examined. Here, the hypothesis is used that forced convective heat transfer in the melt may be modelled
with the help of the coefficient of effective thermal conductivity,. A simplified approach is used in whialy; is

assumed to be known. In another approach the valug;alepends on a prescribed value of a mean melt-stirring
velocity and a mean liquid-pool radius which is determined in the course of solving of the problem. With the
help of the Kirchoff transformation and a Green function we may reduce the problem to a nonlinear Hammerstein
integral equation. Here, a dependence of the thermal-conductivity coefficient on the temperattije at the

cooled surfaces is disregarded and constant (mean) valugsas utilized. In order to solve the problem in the

case where this dependence(T) is taken into account, an axuiliary Green-function method is proposed which
also permits to take into account a change of the heat-exchange coefficients on the autocrucible. This reduces
the problem to a system of three integral Hammerstein equations. Numerical solutions of the nonlinear integral
equations are obtained with the help of a variational (projective-net) method for the case of circular scanning of
an electron beam over the heated surface. The computational results are well consistent with experimental data.

Key words: melting, electron beam, circular scanning, steady-state Stefan problem, auxiliary Green-function
method.

1. Introduction

In order to produce refractory metals and alloys one applies vacuum electron-beam autocru-
cible melting (EBAM) [1, 2], which is a special casting method. The main advantage of this
method (in comparison with other methods of electric metallurgy) is the high degree of metal
refining from harmful nonmetallic and gas inclusions. Complexity of thermal, hydrodynam-
ical and physicochemical processes in an autocrucible, high temperatures and profound vac-
uum not only considerably complicate experimental studies of temperature fields in a melted
portion of material, but make such studies also, for some refractory metals, problematical.
In this connection, besides experimental methods a decisive role is played by mathematical
methods of computation and prediction of thermal and kinetic characteristics of the melting
process.

EBAM is realized applying melt electromagnetic stirring (MEMS) over the whole volume
of the liquid pool, enabling the increase of the end metal discharge. Complex mathematical
models in the form of a set of differential equations of heat and mass transfer, which take
account of hydrodynamic and electromagnetic processes, can be used for melting process
modelling. Such models are extremely laborious and their numerical realization requires much
computer time. In order to determine the basic technological parameters of the EBAM process
on the basis of numerical calculations, it is advantageous to use simplified mathematical mod-



174 Yu. A. Mitropolsky et al.

Figure 1. Scheme of the electron-beam autocrucible melting process in an autocrucible.

els [3-8], based on special statements of heat-conduction problems, including phase-change
metal melt phenomena (Stefan problems). It is necessary to find the temperature fields in both
solid and liquid metal, as well as its moving isothermal surface on which absorption of the
melting heat takes place.

Solid-liquid phase-change problems occur in a diverse range of technical applications, such
as metal processing, welding, environmental engineering and solar energy [9]. A few recent
advances are discussed in [9] with special emphasis on the phase change of metals. An exten-
sive review of moving and free-boundary problems related to the heat equation, particularly
regarding the Stefan problem, can be found, for example, in [10].

Simplified mathematical models of heat transfer during electron-beam autocrucible melt-
ing are developed and examined in [8]. To obtain an approximate description of the liquid-pool
dynamics, the one-dimensional Stefan problem for an ‘equivalent’ spherical shell is consid-
ered. The corresponding steady-state problem admits an exact analytical solution by means
of which the dependence of the melt volufie and melt overheatindh7T', on input data
are obtained. Also, the basic melting parameters are determined ensuring that the preassigned
W and AT are obtained. To solve the one-dimensional nonstationary Stefan problem by the
variational method, it is essential that we use a construction of the exact solution of the
steady-state Stefan problem. As a result, the problem is reduced to a Cauchy problem for
a set of nonlinear ordinary differential equations. As far as the isotherm field is concerned,
the obtained approximate solutions are reasonably consistent with numerical results obtained
with the help of an implicit difference scheme for the Stefan problem.

In this paper we present a two-dimensional axisymmetric steady-state mathematical model
which corresponds adequately to the thermophysical model of the EBAM.

2. Mathematical model

Let us describe the process under consideration and construct a mathematical model for it.
The autocrucible has a cylindrical form (Figure 1), its lateral surface @) and bottom
surface(z = 0) are cooled, and energy absorption of the electron-beam heating with a flux
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densityg occurs in the focal spot of radius < a on the surfacez = [. The generated
thermal energy is spent on metal heating, on melting heat, that can be represented by heat
flows distributed along a melting isotherm (an interface between the solid and liquid phases)
with a constant linear density. Besides, from the lateral and bottom surfaces, heat exchange
with the surroundings (a water-cooled contour) occurs through conduction and radiation in
a manner that is difficult to control. The heat losses through radiation and evaporation take
place from the heated surface.

Heating is realized by a focused electron beam scanning over the heated surface. The level
of the accelerating voltage of an electron gun determines the injection depth of electrons into
the metal and defines the character of the heat source used for the modelling of the electron-
beam heating. In most cases, electron guns of the axial type with accelerating voltages equal
to 40-50 kV can be used [1]. Calculations by the Shonland formula [11] show that in this case
the electron injection depth does not exceed®1f into metal. Therefore, computation of the
metal temperature by means of the mathematical model with a surface source of electron-beam
heating, as used in this paper, assumes a relative error not excediliffy i comparison to
the case which considers volume heat absorption.

When an electron beam scans over a circle, the center of which is situated on the axis
r = 0, or when heating by means of a fixed electron beam is axisymmetric, the temperature
field of an autocrucible is axisymmetri€, = T (r, z). In accordance with the thermophysical
meaning of the problem, there would be a stabilization to a limiting steady state if the overall
supplied heat flux is completely balanced by means of the cooling system and by heat losses
connected with radiation and evaporation. We may write the steady-state equations of heat
conduction and the boundary conditions as follows
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Here the following notations are introduced:

As(T), T < Ty,

MT) = {
)\'L(T)’ T 2 Tm,

whereTy is the water temperature in the cooling systé@nis the melting temperaturg; , A

are the thermal-conductivity coefficients for the liquid and solid phases, respectjiely;

is the electron-beam heating-power density being absorbed by the mieral;= o T4 +

n(T — T,,) Qev(T) is the flux density of heat losses at the expense of radiation and evapora-

tion from the heated surface,= I, (n(T) is the Heavyside function). Further,o are the

blackness degree and the Stefan-Boltzmann constant. In the general case the coefficients of

heat exchange on the cooled surfaegsz), a>(r), may be functions of, r, respectively. The

domain = {(r,z) : 0 <r < a,0 < z < I} is divided by the solid-liquid boundary into
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two subdomain®2s = {(r,z) € Q : T(r,z) < T,} andQ; = {(r,2) € Q : T(r,2) > T},
corresponding to the solid and liquid phases of the metal.

On an unknown solid-liquid interface, = R(z), the metal temperature and the melting
temperature have to be equal and the same is true for the heat fluxes coming from the liquid
and solid phases in the steady state,

oT oT
T(R(Z)’ Z) = va AL— = )"S_

on on ’ @)
r=R(z)—0 r=R(z)+0
We shall use the well-known hypothesis that forced convective heat transfer in melt con-
ditioned by MEMS may be simulated with the help of the coefficient of effective thermal
conductivity, .z = k., wherex, is the coefficient of molecular thermal conductivity. To
determine the value df we may use the formula obtained as a result of experimental investi-
gations on turbulent heat transfer in the case of forced convection [12]:

i 0-45(PrRe%*8 if PrRe < 8600,

_ 3
1.35x 10-6(PrRe*®, if PrRe> 8600. ®)

Taking into account that PrRe 2uv,,r.Cy . /A., we see depends on the heat capacity of a
unit of liquid-metal volume&”y ; on a mean melt motion velocity, and on a mean pool radius
r«. In [1] the valuek = 10 is used for calculating the case where electromagnetic stirring is
sufficiently intense.

Assume the coefficient of effective thermal conductivity = const in the liquid phase
domain,a1(z) = a1 = const, we may transform the steady-state Stefan problem (1), (2) into
the form
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We shall represent the functiaDgy (T'), designating the density of the heat flux of evap-
oration in the formQey(T) = c1 exp(—c2/T), where one may find the parametessc,,
using both data from experiment and the Clapeyron—Clausius law written for a thin gas layer
closely approximating the evaporation surface, [13].
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3. Procedure of solving of the Stefan problem

At present numerical methods for the Stefan problem, such as the finite-difference method and
the finite-element method, are available [9, 10, 14-17]. However, realization of these methods
in the case of two space dimensions is accompanied by considerable technical difficulties and
insufficient economy of the computations. Therefore, we shall reduce the Stefan problem (4)
to a nonlinear integral Hammerstein equation.

First we apply the Kirchhoff transformation of the functi@n

T—Ty
u(T) = / A(t) dt.
0

If the dependence of the thermal-conductivity coefficient on the temperature is approxi-
mated by the step function

MT)=2i, Ta<T<T, i=1K, (Tx=T, To=Ty);
MT) =kry, T >T,,

or by the linear dependence in the solid-phase domain

As(T) = rs(To) — B(T —Tp), To<T < T, (To=Tw);
MT)=kry, T >T,,

we can find the inverse functidhi(x) in analytical form.
If we excludeT (r, z), from (4), we obtain a simpler boundary-value problem for a new
unknown functionu(r, z),
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and the condition for the determination of an interface R(z) between the solid and liquid
phases

u(R(z),2) = Up. (6)

Hereh; = a;/As;, i = 1, 2, whereig; are mean values dfs on the surfaces = a and
z = 0, respectivelyu,, = u(T,,).

We shall consider the Green functio@i(r, z; p, n), which is determined as a solution of
the linear boundary-value problem with homogeneous boundary conditions

19 [/ 3G 9°G
——|\|\r— )+ 55 =-00r—-—p¥Gz—-n, O<rp<a, O0<zn<l,
ror or 072
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where the formal relations for the Dirac function are given by

1 a
/ 81(2)8(z — n) dz = g1(n), / 82(r)é(r — p)rdr = ga(p).
0 0
The Green function is found in the form

Gl pi 2. 1) = Ei Y Jo(Yap) Jo(yur)8n (2, 1)
T a2 = (2 + yDly, Sinh(y,l) + ha cOshy,D 1 (vua)”

whereg, (z, n) = [y, COSNy,, 2) +ha sink(y,,, z)1cosh(y, (I — 1)), 2 < n; 8.(N, 2) = gu(z, M);
v, > 0 are roots of the equation Jo(ya) — y J1(ya) = 0; J,(z) is the Bessel function of the
first kind andnth order.
By means of the second Green formula probem (5) may be reduced to an equivalent
nonlinear integral equation

u(r, z) = uo(r, z)—/o G(r,z; p, D) fIT (u(p,1))]pdp, (7)
where
uo(r, Z):/o q(p)G(r,z; p,)pdp.

Substitutingz = [ in (7), we arrive at the nonlinear Hammerstein integral equation for the
functionv(r) = u(r, 1)

v(r) = vo(r)—/o G(r, p) fIT (v(p)]pdp, (8)

wherevg(r) = uo(r, 1), G(r, p) = G, 1; p,1). Upon solving integral equation (8), we may
find the functionu(r, z) and the solid-liquid interface = R(z) from quadrature (7) and
Equation (6), respectively.

To find an approximate solution of Equation (8), we approximéitg by the step function
and define a mean integral valuewd§-) on the interval(r;_1, r;) by v;, wherer; are decom-
position points of the segmeffd, «] which has been divided intd/ parts. After applying a
variational method, we obtain a system of nonlinear equations;fgr = 1, M,

M
v; = vo; — ZGijf(T(vi))a j=1LM, ©)

i=1

where the constants ;, G;; are found by integration of known functions.
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Having determined;, j = 1, M, we can represent the modified temperature in the form
of a series

2 (@]
ur,2) = =3 An@)Jo(rar), (10)
n=1

where

Vn
4p,

a M
An<z)=[ /O rq(r)Jomr)dr—Zf(T(vo)Am}gn(z);
i=1

A [ri J1(Yuri) — ricar Ju(yuri—1)]
ni Pn ’

Py = (¥2+ D)y + ha — (vn — h2) €Xp(—=2y,1)1JE(vma),
21(2) = (Y + h2) eXp(—yu(l — 2)) + (Vn — h2) eXp(—yu(l + 2)).

Using a simplified approach, we can assume the coefficient of effective thermal conductiv-
ity to be known(.z = const), independent of a solution of the heat-conduction problem. In
that case system (9) remains to be solved.

Using another approach where a value.gf= kA, is determined in the course of solving
the problem, we can use formula (3) in accordance to whid#pends on a mean melt-stirring
velocity v,, and a mean radius of the liquid poel, We shall assume that the valuewf is
determined by the action intensity of the MEMS system only. If the valug,d§ given, we
may reduce the determination joto finding a mean integral value of the liquid pool radius

Vx

1
/ R(z)dz (11)

I —2z0J

over its depth,H = [ — zq, also to be determined. Hetg is a solution of the equation
R(z) = 0. In this case it is impossible to find a solution of system (9) since the paraknster
used for determining of a relation between the functidrendu.

Let us describe the solution procedure of the problem in this case. Evidently, we can find
k = k(r,) from (3) and computé.; = k(r.)A, for every value of-, € (0, a) and then we
can solve system (9). Further, considering Equation (6) for a sequence of discrete values of
we can find a sequence of corresponding values of the fungtienR (z;) by which we can
compute the right side of equality (11). Thus, relation (11) can be written in the form

re = F(ry), (12)

whereF (r,), is a function which for every, € (0, a) correlates to a computation result of the
right side of (11) obtained in the way stated above. Thus, the determination of a mean integral
value of the pool radius, is practically reduced to the numerical solution of the functional
equation (12) by an iterative procedure.

Therefore, after finding an approximate solution of Equation (12), we can find a coefficient
of the effective thermal conductivity, = k(r.)’r, a modified temperature fieldr, z) and a
solid-liquid boundary- = R(z) with a mean integral value of the radius which is equal.to
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The desired steady-state temperature fiéld z) is determined by inversion of the Kirchhoff
transformation: (7).

The liquid-pool volumeé¥, the mean integral melt overheating over the whole pool volume
AT and the melt overheating on the pool surfacg are computed by means of the formulas

I or (L [R@
W= 71-/ R?(z)dz, AT = —/ / T(r,z)rdrdz — T,,,
w z0 4O

20

2 R()
AT, = —/ T(r,Drdr — T,,.
R2(1) Jo

4. Determination of q(r) in the case of circular electron-beam scanning

In practice, EBAM heating is realized by a focused electron beam scanning over the heated
surface in accordance with a given program (a circle, a spiral, intersecting lines and others).
Let us determing (r), a steady-state power-density distribution on the heated surface in the
case of the scanning of an electron beam over a circle of radiu®0< a. Let O; be the focal

point of a beam situated in the plane= [ and| O O1| = R, whereO is situated in the same
plane on the autocrucible axis. Let us consider a puf(g) at a distance to the pointO and

one at a distance(g) to the pointO1, whereg =< 0,0M(8). At M(B) the value of the

power density is equal t@ expl—k, y?(8)], wherey?(8) = R>+r?>—2rR cosf, 0< B <m

(from the cosine theorem)jy = Pk, /m is the value of the heating-power density at the
focal point of a beamp is the heating power being absorbed by the métak= 262 is a
concentration coefficient of the heat source in the radial directiorbasd focal-spot radius.

The density of the energy being absorbed at every point at a distaffices the pointO and

at the time when the electron beam traverses one full circle of ral{iisthe rotation period

Tsc = 27 R /v, Wherevg. is a scan velocity) is determined by the integral

TSC/2
E(r) = 2q0/ exp{—k,[r? + R?> — 2Rr- codvsd /R)]} Ot
0

_ 2R oyt 02 4 RD) / " exp(2t, R cosp)dp.
0

Usc

The functiong (r) is assumed to be the mean value of the energy density being absorbed
per unit time

E@) _ % expl—k, (% + R?)] / " exp(2k,r R- cosB)dB. (13)
0

q(r) =
SC
From (13) we obtain fokR = 0 the known formula for the normal distributian(r) for the
case of axisymmetric heating by a fixed beagitr) = exp(—k,r?). Expanding the exponential
function under the integral sign in (13) as a Taylor series, we may write the expressian)for
as

>\ (2n — D! (2k,r R)%
q(r) = qo exp—k,(r*> + R?)] [1 + } .
; 2n)!! (2n)!
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The investigation of the functiop(r) from (13) shows that a maximum point gfr),
r = ro, is determined by the equation

s
/(R-cosﬂ—r) exp(2k,rR-cosp)dp = 0, (14)
0
(o
9% Tt 0/,
1,0
09k \¢
stk
o1
08P,
05t
04
03 3
e}
ot r <4
£ {/5
0oz 4 ¢ 1 0 % rm

Figure 2. Relative power density distribution of an  Figure 3. Influence of focal-spot radius on Niobium

electron-beam over the heated surfacefer 0-03 m dimensionless temperature distribution over heated
and various values of circular scan radius:RL:= surface forR = Om; 1:» = 0-01 m; 2:» = 0-02m;
Om; 2:R = 0.015m; 3:= 0.025m; 4:R = 0-03m; 3:6=003m; 4:b = 0-04m.

5 R=004m;6:R =04m.

from which we obtain the inequalitiesQ ro < R. These inequalities are verified by a form
of the curvesy (r)/qo shown in Figure 2 for the case whease= 0-03 m and the scan radius

R takes various values: iR = 0 and R= 0-15m, then the maximum is a§ = 0, but if

R is further increased, then the maximum points are situated on the intén&l. Thus, for
specific values oR, the trajectory (a circle) of a maximum absorption of the heating energy
is situated inside the circle as bounded by the scan trajecteryr, but not on the line = R

of the focusing beam. We may write Equation (14) as

i (2n — D! |:2krr2 1

(zn)' (zn)' _ (2n - 1)':| (2kr)2n_lR2nl"2n_2 = 0.

n=1
Restricting ourselves to two terms of the series, we obtain the biquadratic equation
k*R** + 2k*R?(2 — k, R?)r? — 4(k,R> — 1) = 0,
from which we find the following approximate value f

V2 RZ=1)

ro ~
0 k R
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and from the conditiomy > 0 we have

R 1 b
> = —.
NG

5. Numerical results

To illustrate the mathematical model developed in this paper, we did calculations of steady-
state EBAM heat regimes for niobium in an autocrucible of diameter 28Qénsa 0-14 m),
where a level of the metal in the autocrucible was 0-14 m and the electron-beam power
was P, = 190kW. In accordance with [1] the electron-beam heating efficiency is equal to
n = 0.7, therefore, we assume that the power being absorbed by the metal is equat to
nPy = 133 kW.

For the calculations we take the following values of the parameters [1718% 2740K;
Cyr = 02772 x 107 J/(nmPK); Ty = 300K; A, = 562716 W/(mK); a1 = ap =
400 W/(n?K); &€ = 0-4;¢1 = 0-31102< 10'®; ¢, = 93868526 (the values af;, andc, were ob-
tained on the basis of the experimental data from [3]). In the solid-phase domain we consider
a step dependence of the thermal-conductivity coefficient on the temperature obtained with
the help of data for the niobium heat conductivity [18]. We consider axisymmetric heating of
metal by a fixed R = 0) or scanning electron beam over a circle of radius ® < «a, where
a steady-state distribution of the power density) on the heating surface is determined as in
(13).

In Figures 3 and 4 the curves of the metal-temperature distribution over the heated surface,
as obtained for various values of the scan radti® = 0 for Figure 3)and the focal-spot
radiusb, provided that the MEMS system is used, are shown. Here weuake 0-3m/s
because in autocrucibles that have been subjected frequently to MEMS systems, the metal
velocity is known to be close to this value (see [1]). The valudsafftained for values of the
scan radius between 0 to 6 cm range fro@48to 1311 whenb = 0-01 m and from 1179 to
12.88 forb = 0-04 m, that is, these values are closé te 10[1]. A comparison of the curves
of the melt-surface temperature obtained#ce 0-03 m,v,, = 0-3 m/s (continuous lines) and
k = 10 (dashed) is presented in Figure 5.

The temperature curveB(r, 1) for different values ofR reproduce the behavior of the
corresponding dependences gr) (Figure 2). Increasing the scan radius and the focal-spot
radius lead to a more uniform distribution of the density of the energy that is absorbed over
the heating surface and consequently, a decrease of the temperature gradient as well as natural
increase of the pool radius on the surface- /. If R is increased, the points of maximum
temperature attainment recede from the centet 0 of the pool surface, the temperature
T(0,1) decreases and approaches the melting temper@turéherefore, if the scan radius
increases considerab()R > 0-06 m) the formation of a solid metal zone in the central part
of the pool is possible. Above the melting temperature, the temperature curves have a break
point. This is stipulated by the difference of the thermal-conductivity coefficients for the melt
and solid metal.

To determine the error made when the nonlinear boundary-value problem (5) is solved
approximately, we have computed the value of the total energy losses from the sugace
[,z = 0 andr = a which, for the exact solution of the steady-state problem, must be equal
to the value of the poweP absorbed by the metal. Calculations carried out with the use of
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the niobium data and the parameters stated above fer0-03 m show that the error made
during the process of determining the temperature on the surfaces, z = 0 andr = q,
and computed with respect to the value of the power absorbed, is equdbth forR = 0

and to 0165% forR = 0-03 m.
T/ T,

T 0/ T,

13

12
12
40 F

08
14

08

04

3 s . . ‘ . 1,0 T ™y
"o z 4 6 g 10 12 F, em 0 2 4 6 s r, un
Figure 4. Influence of circular scan radius on Figure 5. Comparison of Niobium dimensionless
Niobium dimensionless temperature distribution temperature distributions over heated surface for
over heating surface fdr = 0-01 m (continuous b = 0-03m,v,, = 0-03m/s (continuous lines) and
lines) andb = 0-04 m (dahsed). 1R = Om; 2: k = 10 (dashed) for various values of scan radius.
R=002m;3:R =004m; 4:R =0-06 m. 1.R=0m; 2R =002m; 3:R = 0-04m; 4:

R = 0-06 m.

Figure 6 shows the sections of the solid-liquid interfagess R(z), that were obtained
for various values of the scan radisfor the cases where the MEMS system is uegd =
0-3m/s), including the case when then the radiation and evaporation heat losses from the
surfacez = [ are disregardedf = 0) and for the case where forced melt stirring is omitted
(v, = 0-005m/9. In this last case the value &f changes from #4 to 200. When the
scan radiusr is varried from 0 to @5 m. The pool depth increases withand reaches a
maximum for a specific value of the scan radius, but it decreases Rigefurther increased.
At the expense of heat losses from the heated surface, the depth and the radius of the pool
decrease approximately by half. In the case of melting, when MEMS is used, the pool reaches
its greatest diameter not on the surface= [, but a little below it; thus, the solid-liquid
interface has a small bend in the direction of the axis 0, giving the pool an ellipsoidal
form as observed in practice. The presence of this bend is explained as follows: the heat losses
exceed the energy absorbed in the points where the melting isotherm surface intersects the
surfacez = I; therefore, the derivative of the temperature with respect to the axial coordinate,
z, IS negative close to the surfage= I. In the two other cases this derivative is positive
(v, = 0-005m/9 and in another is equal to zefg = 0). It should be noted that, for the
linear problem(f = 0), the position of the solid-liquid phase boundary= R(z) becomes
independent of the effective thermal-conductivity coefficient.
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Figure 6. Influence of the value of circular scan ra- Figure 7. Dependences of niobium liquid pool vol-

dius on sections of solid-liquid interfaces= R(z), ume on scan radius for the cases whgge= 0-3m/s
obtained atb = 0-03m for the cases wheng, = (continuous lines)y,, = 0.-005m/s (dashed) and
0-3m/s (continuous linesy,, = 0-005m/s (dashed) f = 0 (dot-and-dash) fob = 0-01m (indexing
and f = 0 (dot-and-dash). 1R = Om; 2: R = 1-3) andb = 0-04m (2-3) and various values of
0-03m; 3:R = 0-04m; 4:R = 0-05m. powerP-1,1 : P = 65kW; 2,2 : P = 100kw,

3,3 : P =133kW.

The graphs presented in Figures 7 and 8 show that an increase of the scan radius causes
an increase of the pool volume and a decrease of the melt overheating. This is fully explained
by the observation that the energy absorption is distributed more uniformly over the heated
surface wherr is increased. But in the case of melting with MEMS an extreme increase of
the scan radius causes a decrease of the volume, and for letleeyfunctionW (R) has a
maximum at some point. A comparison of the curV&éRr) obtained forv,, = 0.005 m/s and
v, = 0-3m/s shows that the use of MEMS permits to obtain Roe= 0 a volume which is
7-5-20 times bigger (depending on the valuebptind for R = 5cm, for example, 8-35
times bigger. Applying a circular scan of the electron beam, one can make the pool volume
twelve times bigger fob = 1cm (in comparison with the axisymmetric heating by a fixed
beam) and fob = 4 cm the volume is increased by 15%. At the expense of heat losses from
the heated surface the liquid pool volume is decreased by a facts-ef for absorbed-power
levels in the range? = 65-133 kW. The melt overheating on the pool surface is more than
two times bigger than the mean integral overheating over the whole pool volume (Figure 8).

In Figure 9 we show the dependence of the relative total energy losses by radiation and
evaporation from the heated surfad@p.eyv/ P, (continuous lines), the relative losses by
radiation, Prp/ P, (dashed lines) and by metal evaporatiday /P, (dot-and-dash ones) on
the scan radiu® for k = 10 and various values of the focal-spot radius. This analysis allows
us to conclude that an increase of the scan radius will lead to lower total I®&seSy;
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the contribution of the radiation losses is increased and evaporation is decreased. Let us pay
attention to the fact that the total losses are stabilised and the presence of a minimum value of
Prp.ev/ P for a specific value of the scan radius (to which a maximum value of the liquid pool
volume corresponds (Figure 7)). This points to the possibility that the EBAM technological
process can be constructed in such a way that energy losses through radiation and evaporation
can be reduced to a minimum.

AT, ATZ N K
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4001~ §//

00 F

Figure 8. Dependences of niobium mean integral Figure 9. Dependences of relative energy losses from
overheating over the whole pool volume (continuous the heating surface (continuous lines), losses at the
lines) and melt overheating on pool surface (dashed) expense of radiation (dashed) and metal evaporation
on scan radius for the cases whére: 0-01 m (index- (dot-and-dash) on scan radius for= 10 and various

ing 1-3) and» = 0-04 m (¥-3) for various values of values of the focal spot radius. 4:= 0-01m; 2:b =
powerP-1,1' : P = 65kW; 2,2 : P = 100kW; 0.02m; 3:b» =0.03m; 4:h = 0-04 m.

3,3 : P =133kw.

6. Auxiliary Green function

In the reduction of the Stefan problem (4) to problem (5) for the modified tempetadtre

a dependence of the thermal-conductivity coefficiept?”) on temperature on the surfaces
r = a andz = 0 was not taken into account; instead constant (mean) valugs wkre
utilized. After applying the Kirchhoff transformation to the more complicated problem (1),
(2), we now obtain a nonlinear boundary-value problemuf@t z)
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Because a Green'’s function for the linear boundary-value problem corresponding to prob-
lem (15) does not exist, we represent the boundary condition on the surface in the
form

9
a—u-i—hu = hu — a1 ()[Tw) —Twl, r=a, O<z<l,
.

(h is an arbitrary number such that© 2 < oo) and formulate the boundary-value problem
for an auxiliary Green functio, (r, z; p, x)

10

r or

3G, 092G,
r + =—-80r—p)¥iz—x), O<r,p<a, O0<z x<I,
or 972

3G,(0,z;p,x) 0G,(a, z; p,x)

0 — 4+ hG cp,x) =0,
™ X o +hGu(a,z; p,x)
0G,(r,0; p, x) _o, G, (r, L; p, x) _o

0z 0z

The solution may be written in the form

G(x,2)
P,

1 o
Gu(r,z; p,x) = ;X_;

Jo(ynp) Jo(yur),

Gn(x,2) = vu €XP—yu(z — 011 + exp(—=2y,0)][1 + exp(—2y, (I —2))], x <z,
Gu(x,2) =Gz, %), Py= )+ "1 - exp(—2y,D1JE (vaa),
where O< y; < ¥» < y3 < - - - are the roots of the equatidn/y(ya) — vy Ji(ya) = 0.
This auxiliary Green-function method was proposed first in [19].
Introducing the following notationsi(r, 0) = vo(r), u(r,1) = vi(r), u(a, z) = w(z), and

using the second Green formula, we can express the unknown fumgtiar) in terms of its
values on the surfaces= 0, z =/ andr = a:

u(r,z) = /0 G.(r,z; p, DIlg(p) — f(T (v1(p)))]pdp
[
+a/ G.(r,z;a, x){hw(x) — a1 (X)[T (w(x)) — T, }dx (16)
0

—/0 Gu(r, z; p, 0)a2(p)[T (vo(p)) — Twlpdp.
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Writing the integral relation (16) for = 0,z = [ andr = a consecutively, we obtain a
system of three Hammerstein integral equations for the functigi3, v, () andw(z). Upon
solving this system approximately by means of a projective-net method, we may(fing
from (16).

The numerical solution of the system of integral equations obtained from (16), is found
for the case of a steady-state temperature regime for the EBAM of niobium in an autocrucible
of diameter 280 mnia = 0-14 m) with a metal level equal tbo= 0-14 m. We have assumed
thatao(r) = 0, R = 0,b = 0-04m,Ap = 562716 W/(mK). We have considered a linear
dependence of the thermal-conductivity coefficieg{7) on the temperature based on the
niobium thermal-conductivity data [18ks(T) = Ag + B(T — Tw), Ao = 537 W/(m-K),

B = 0-01063,7y = 300K.

Figure 10 presents the sections of the solid-liquid interfaces R(z) obtained forw; =
400 W/(n?K) and for two values of the electron-beam heating power absorbed by the metal,
P = 130kW andP = 65 kW, and for various representations of the thermal-conductivity co-
efficient in the solid-phase domain.g = 54.1W/(m-K) (the value from [1]),As =
66-2 W/(m-K) (a mean value in the temperature interval from 300K to 2740 K) as well as
a linear dependencks = Ag(T) (curve 3). Curves 4 and 5 correspond to the case where
As = Ag(T) and a linear dependence of the heat exchange coeffigj€nt on z is assumed.
Here,a1(0) = 300, o1 (!) = 500 W/(nTK) (the curve 4); curve 5 corresponds to the values
a1(0) = 200, oy (1) = 600 W/(n?K).

Thus, since the dependence of the thermal conductivity on temperature could be taken into
account, thanks to the introduction of the auxiliary Green-function method for the example in
question, the refinement of the result for the melt volume ranges fre@%d.(comparison of
the curves 2 and 3) to 36 (comparison of the curves 1 and 3). Besides, the application of the
auxiliary Green-function method permits to take into account a change of the heat-exchange
coefficients on the cooled surfaces, of the autocrucible which, in turn, for the preceding ex-
ample leads to a refinement of the results of the calculation of the melt volumer#y (a
comparison of the curves 3 and 4) and by2P® (comparison of the curves 3 and 5).

If we compare the obtained values of the liquid-pool volume and the results obtained for
the constant valugs = 662 W/(m-K) on surface- = a and a step dependentg = Ag(T) in
the solid-phase domaifg, we see that such assumptions lead to an enlargement of the volume
for a; = 400 W/(ntK), P = 130 kW by 153% and by 9% for P = 65 kW. In addition, the
maximum rise of the metal temperature in the solid-phase domaif fer130kW is 100 K
and 40K at the center of the focal spot on the heated surface.

7. Comparison with experimental data

To verify the agreement of the mathematical model described by the Stefan problem (4) to
real thermal EBAM regimes, we have carried out a comparison of the computational results
with known experimental data given in [1]. For the experimental case of niobium melting
in an autocrucible of diameter 280 mm with MEMS for an electron beam of maximum power
Py = 190 kW, the mass of the obtained melt oscillates frofk@ to 87 kg, that is, its volume
varies between 978cn? and 10116 cn®. In Figure 7 the curve® (R), corresponding to the
value P = 133 kW, intersect this band of values for scan radius values between 3 and 5c¢cm.
In accordance with [1] in the case of EBAM without forced stirring the pool depth of zir-

conium in an autocrucible of diameter 250 mm amounts to 24—28 mm. In accordance with our
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Figure 10. Sections of solid-liquid interfaces = R(z) obtained for the cases whefe = 130 kW (continuous

lines) andP = 65kW (dashed) at; = 400 W/(nPK) (curves 1-3); for a linear dependeneg(z) (curves

4, 5) and various ways of representation of the thermal conductivity coefficient in the solid phase domain. 1:
Ag = 54-1W/(mK); 2:)\.S = 662W/(mK), 3ZkS =A5(T);4: A5 = ks(T),Cl]_(O) = 300,051(1) = 500W/(n12K),

5:hg = Ag(T), @1(0) = 200,a1(l) = W/(m2K).

calculations for zirconiunga = 0-125m;/ = 0-1 may = 400 W/(n?K); az = 50 W/(n?K);
v, = 0-005m/sp = 0-03m; R = 0-35m,x andCy, from [1]) the pool depth oscillates from
20 to 27,2 mm if the absorbed power is changed fi®ra 525 kW to P = 105 kW.

In [1] one obtained experimental results for zirconium melting in an autocrucible of di-
ameter 215 mm for a maximum power & = 102kW (P = 0-7kW, Py = 714kW).
The autocrucible bottom was not cooled. The discharge of the zirconium melt for melt-
ing with MEMS was equal to 1@ kg (16487 cn?) and without MEMS it was equal to
3-1kg (4778 cn?). To compare the results we have performed calculations for the following
parameters values:

(1)a = 01075m;/ = 01m; b = 003m; P = 714KW; oy = 400 W/(mPK): ap =
50 W/(n?K); v,, = 0-3m/s; 3cm< R < 6¢cm;

(2) a = 0.1075m;/ = 005m;b = 0.03m; P = 714kW; oy = 400 W/(N?K); ary =
50 W/(n?K); v,, = 0-005m/s; 3cnK R < 5-:25¢cm.

In the first example the liquid-pool volume is changed from 918 633 cni and in the
second it is changed from 206 cm and 464cm

In [20] it was established that melt overheating over melting temperature did not exceed
100K for the stirring velocity in a liquid pool af,, = 1 m/s. This result agrees well with the
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values of the maximum temperature on the pool surface obtained by means of our numerical
calculations. For niobiunta = I = 0-14m;b = 0-03m; P = 133kW; R = 0-065m) the
maximum overheating is equal to 101-102 degrees and for the scan ragiu8-05m one
achieves 186 K. For zirconiurm = 0-1075m,/ = 0-11m;b = 0-03m; P = 714 kW) the
maximum overheating ranges from 134K = 0-045 m) to 95 K(R = 0-055m).

8. Conclusions

Comparison of the obtained results with experimental data has shown that the proposed math-
ematical models correspond adequately to the thermophysical model of the EBAM in a cylin-
drical autocrucible during axisymmetric heating. Going from the mathematical model to the
numerical scheme involves analytical methods. These eliminate the necessity of the approx-
imation of the derivatives with respect to the space variables which is required by the finite-
difference method. We have avoid certain undesirable aspects of the finite-element, such as
considerable technical difficulties and insufficient economy of the computations.

Applying the Green-function method we were confronted with the necessity of using a
constant value of g on the cooled surfaces of the autocrucible. Otherwise the Green function
of the Neumann problem which we obtained for the funciign z) would not have existed.

But we have overcome this obstacle by introducing an auxiliary Green function. This function
we constructed applying an equivalent transformation of some of the boundary conditions of
the problem.

Regarding future research we must note that the development and investigation of the
nonstationary mathematical model is complicated considerably in the case of heating by a
scanning electron beam. We can not be certain yet that the corresponding nonstationary Stefan
problem will be axisymmetric.
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